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Abstract
Purpose Type 2 diabetes is associated with a higher risk of cardiovascular diseases, lowering the quality of life and increasing 
mortality rates of affected individuals. Circulating monocytes are tightly involved in the atherosclerosis process leading to 
cardiovascular diseases (CVD), and their inflammatory profile can be modified by exercise. The objective was to explora-
tory identify genes associated with CVD that could be regulated by high-intensity interval training (HIIT) in monocytes of 
type 2 diabetes patients.
Methods Next-generation RNA sequencing (RNA-seq) analyses were conducted on isolated circulating monocytes  (CD14+) 
of six women aged 60 and over with type 2 diabetes who completed a 12-week supervised HIIT intervention on a treadmill.
Results Following the intervention, a reduction of resting diastolic blood pressure was observed. Concomitant with this 
result, 56 genes were found to be downregulated following HIIT intervention in isolated monocytes. A large proportion 
of the regulated genes was involved in cellular adhesion, migration and differentiation into an “atherosclerosis-specific” 
macrophage phenotype.
Conclusion The downregulation of transcripts in monocytes globally suggests a favorable cardiovascular effect of the HIIT 
in older women with type 2 diabetes. In the context of precision medicine and personalized exercise prescription, shedding 
light on the fundamental mechanisms underlying HIIT effects on the gene profile of immune cells is essential to develop 
efficient nonpharmacological strategies to prevent CVD in high-risk population.
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Introduction

Type 2 diabetes (T2D) is a multifactorial pathology that low-
ers the health-related quality of life and increases mortal-
ity rates of affected individuals (Trikkalinou et al. 2017). 
T2D incidence steadily grows, and its complications are a 
major public health problem worldwide (Trikkalinou et al. 
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2017). For instance, insulin resistance and hyperglycemia 
are linked to vascular dysfunction and hypertension (Muni-
yappa and Sowers 2013), which directly contributes to the 
risk of developing cardiovascular diseases (CVD), in par-
ticular in women and the elderly population (Shalev et al. 
2005). Although cholesterol-lowering molecules such as 
atorvastatin are the primary prevention treatment for CVD in 
T2D patients, it has been demonstrated that reducing chronic 
inflammation can also reduce the risk of atherothrombosis 
independently of lipid-lowering drugs (Ridker et al. 2017). 
Indeed, a controlled balance of the inflammatory state 
(anti- vs pro-inflammatory) is necessary to maintain cellu-
lar homeostasis, whereas chronic pro-inflammation condi-
tion is associated with physical inactivity, obesity, diabetes, 
and CVD (Roberto Carlos et al. 2020). The latter remains 
the leading cause of morbidity and premature mortality in 
industrialized countries (Townsend et al. 2016).

It is well recognized that chronic inflammation plays an 
important role in the pathophysiology of atherosclerosis 
(Libby et al. 2011). Inflammatory signals trigger vascular 
cell dysfunction and promote the recruitment of immune 
cells inside the arterial wall, which participate in the devel-
opment of atherosclerotic plaque formation and complica-
tions (Arslan et al. 2017). As these monocytes/macrophages 
uptake cholesterol and become foam cells, they trigger the 
recruitment and activation of other immune cells such as 
T cells and sustain a chronic inflammation environment 
(Davis and Gallagher 2019). Monocytes are also involved 
in the initiation, progression, and manifestation of arterial 
hypertension (Rodriguez-Iturbe et al. 2017). In adipose tis-
sue of obese patients, immune cell infiltration promotes the 
systemic release of inflammatory cytokines and chemokines. 
Elevated levels of these cytokines and chemokines have been 
shown to correlate with insulin resistance (Davis and Gal-
lagher 2019). Therefore, any non-pharmacological therapeu-
tic strategies that could modulate monocyte inflammatory 
state could represent an interesting avenue to prevent hyper-
tension and CVD (Wenzel 2019), especially in older adults 
with chronic disease potentially dealing with polypharmacy.

Lifestyle modifications are the first line of treatment for 
T2D. In particular, physical exercise has been shown to 
effectively improve glycemic control (Winding et al. 2018), 
reduce blood pressure (Cornelissen and Smart 2013) and 
prevent CVD (Kubota et al. 2017). Interestingly, the pro-
tective actions of exercise against inflammatory diseases, 
particularly CVD, have been associated with an anti-inflam-
matory effect on monocytes (Dimitrov et al. 2017). Although 
different exercise training programs have been shown to be 
favorable, high-intensity interval training (HIIT) has the 
advantage to maximize cardiovascular fitness benefits (Ross 
et al. 2016), while also improving vascular health markers 
(Schjerve et al. 2008) and ambulatory blood pressure over 
24 h (Molmen-Hansen et al. 2012). In addition to being a 

less time-consuming exercise modality, HIIT protocol could 
be more effective at controlling the glycemia of T2D patients 
than continuous exercise training (Terada et al. 2016). More-
over, in older adults, HIIT can shift immune cells toward an 
anti-inflammatory phenotype (Bartlett et al. 2018). In this 
context, it is not surprising that organizations such as Dia-
betes Canada recommend 150 min of aerobic exercises per 
week, including HIIT for the prevention and management of 
T2D (Sigal et al. 2018).

Although the HIIT intervention could be a valuable treat-
ment modality for T2D patients, the mechanism of action 
on the monocyte inflammatory state is only partially under-
stood. The leading hypothesis of this study was that the HIIT 
intervention may reduce blood pressure by regulating ather-
osclerosis-associated processes, in particular by altering the 
inflammatory profile of monocytes from T2D older women. 
In this context, the objective was to uncover the molecular 
effects of a 12-week HIIT intervention on the transcriptomic 
gene expression profiling of circulating monocytes in older 
women with T2D.

Methods

Study design

The data presented in this manuscript are the results of sec-
ondary analyses of a randomized study with two parallel 
groups conducted between January 2016 and September 
2019 (Marcotte-Chénard et al. 2021; Marcotte-Chenard 
et al. 2021). The study was conducted according to the 
guidelines laid down in the Declaration of Helsinki and 
approved by the Research Ethics Committee of the CIUSSS 
de l’Estrie-CHUS.

Study protocol and participants

The recruitment of participants was conducted using the 
platform of the Research Center on Aging (CdRV), the 
geriatric diabetes clinic of the University of Sherbrooke 
Institute, the Estrie diabetes day center (Centre Hospitalier 
Universitaire de Sherbrooke) or through advertisements in 
local media and community organizations (Sercovie, Dia-
bète Estrie). Inclusion criteria: women with diagnosed T2D 
aged between 60 and 85 years old, non-smoker, light drinker 
(≤ 7 alcoholic beverages per week), and physically inactive 
(< 75 min of structured exercise per week for the past year). 
Exclusion criteria: women taking hormone replacement 
therapy, insulin therapy, having unstable medication for the 
past 6 months, uncontrolled hypertension (> 160/90 mmHg), 
uncontrolled lipid profile (total cholesterol > 8 mmol/L, tri-
glycerides > 10 mmol/L and LDL-C > 4 mmol/L), unstable 
weight (± 2.27 kg) in the past 6 months, physical incapacity 
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limiting the practice of physical activity, known diabetic 
complications (nephropathy; retinopathy; neuropathy), a 
surgery planned during the intervention or coronary artery 
disease without revascularization, or other vascular diseases. 
A total of six participants were selected based on the mean 
metabolic profile (A1c, fasting glucose, fasting insulin, 
HOMA2-IR).

Exercise intervention

For 12 weeks, participants performed three sessions per 
week on a treadmill (Life Fitness, Club Series,  FlexDeck®, 
Illinois, USA), one hour after their usual breakfast. All 
exercise sessions were performed under the supervision of 
an exercise physiologist at the Research Centre on Aging 
training facility. The HIIT program consisted of a 3-min 
warm-up (2 min at 55% HR reserve (HRR) and 1 min at 
75% HRR) followed by six 1-min intervals at 90% HRR with 
active 2-min recovery at 45% HRR and a 2-min cooldown 
at 40% HRR (25 min/session including 6 min at high inten-
sity/session). A 4-week adaptation period was performed to 
achieve the prescribed intensity. To reach the target inten-
sity, speed and slope were adjusted in accordance with the 
participant preference, but the slope was limited to 6%. The 
treadmill speed and incline were set 15 s before the begin-
ning of each interval to make sure that the participant had 
60 s at the targeted mechanical intensity. If the HRR was not 
reached during the 60 s, the speed or incline was adjusted 
for the next interval. Participants received verbal encour-
agement throughout the exercise session. Blood pressure 
was measured after a 5-min rest in a sitting position before 
the exercise session using a manual sphygmomanometer 
(ADC Diagnostix 703, American Diagnostic Corporation, 
New York, USA). Participants were instructed to report 
any issues during and after the training session and adverse 
events related to exercise were documented by an exercise 
physiologist.

Dietary habits and nutritional recommendations

Each participant had an individualized consultation with a 
nutritionist prior to the intervention. The objective of the 
meeting was to remind the participants about the nutritional 
guidelines of Diabetes Canada. The dietician focused on 
a low glycemic index diet considering that this approach 
does not require any drastic changes and has no marked side 
effects (Sievenpiper et al. 2018).

Monocyte isolation

Fasting blood samples (pre and post-exercise training inter-
vention) from one EDTA tube per participant were used for 
 CD14+ cell isolation. Post-intervention blood samples were 

drawn at least 72 h (3 days) and at most 120 h (5 days) after 
the last bout of exercise. This timing was of utmost impor-
tance to ensure we were not measuring the acute effects 
of the last exercise bout, but rather the chronic effects of 
the 12-week intervention. Peripheral blood mononuclear 
cells (PBMC) were isolated from whole blood using His-
topaque-1077 reagent (Sigma, USA) and monocytes were 
positively selected using CD14 microbeads (Miltenyi Bio-
tec, Bergisch Gladbach, Germany) and columns (Miltenyi 
Biotec, Bergisch Gladbach, Germany). Monocyte pellet was 
homogenized in 1 mL of Tri Reagent (BioShop Canada, 
Canada) and stored at − 80 °C.

RNA isolation

Total RNA was extracted using the phenol–chloroform 
method and RNA quantity was assessed with a Nan-
oDrop 2000 instrument (Thermo Fisher Scientific, Wilm-
ington, Delaware, USA) as previously described (Lizotte 
et al. 2016). Isolation of mRNA from total RNA was per-
formed using the magnetic Dynabeads mRNA DIRECT Kit 
according to the manufacturer’s protocol (Life Technologies, 
USA). NEBNext Ultra II Directional RNA Library Prep Kit 
for Illumina kit (New England Biolabs, USA) was used for 
the RNA-seq library construction according to the manu-
facturer’s protocol and as previously done (Iberg-Badeaux 
et al. 2017). For PCR amplification, Phusion High-Fidelity 
PCR Master Mix (New England Biolabs; USA), Multiplex-
ing PCR Primer 1.0 (Illumina, USA) and ScriptSeq PCR 
index primers (Illumina, USA) were used. DNA quantifica-
tion Qubit fluorometer (Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) was used for DNA quantification. For 
quality assessment, a microfluidic electrophoresis was done 
with Agilent 2100 Bioanalyser (Agilent Technologies, Santa 
Clara, California, USA) using Agilent High Sensitivity DNA 
Kit protocol (Agilent Technologies, USA). Library sequenc-
ing was performed on Illumina NextSeq 500 instrument to 
a depth of ~ 20–60 million pass-filter reads per library at 
the RNomics platform of Université de Sherbrooke. Data 
quality was assessed, and sequences were aligned on the 
human genome.

RNA‑seq analysis

The quality of fastq files was assessed using FastQC (v 
0.11.4) and trimmed using TrimGalore (v 0.6.4) with a 
Phred score threshold set at 20, a trim of 3 bp from the 5′ and 
3′ end to avoid poor qualities or biases, and a maximum of N 
set at 5 per read. Thus, adaptors and low-quality reads were 
removed. Reads were then aligned to the human genome 
build hg38 using the annotation file from Gencode (v32) 
with the STAR software (v 2.7.3a) using default parameters 
and the following options: --outFilterMultimapNmax 10 
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--outSAMprimaryFlag AllBestScore --outFilterMismatch-
Nmax 5. Aligned reads were then assigned to genes using 
the featureCounts algorithm from the Subread package (v 
2.0.0). The parameters for featureCounts were set as follows: 
-C -M --fraction -Q 15 -g gene_id -t exon --fracOverlap 0.25 
--largestOverlap --minOverlap 15. Differential expression 
analysis was conducted in an R environment (version 3.5.3) 
using the DeSeq2 package (version 1.8.2) with a FDR set at 
5%. GSEA analyses were performed using the open-source 
GSEA software (v 2.0, Broad Institute, MA, USA). Figures 
were produced using in-house python scripts (v 3.7.3).

Gene expression analysis by qPCR

To confirm changes in expression uncovered by RNA-seq, 
individual gene expression was quantified by qPCR as previ-
ously described (Lizotte et al. 2016). The genes selected for 
qPCR were based on their association with cardiovascular 
diseases such as genes related to monocyte/cell adhesion, 
inflammation and immunology. RNA was reverse tran-
scribed using Superscript IV reverse transcriptase kit (Ther-
moFisher Scientific, USA). Real-time PCR was performed 
to evaluate mRNA expression of genes of interest in isolated 
monocytes. PCR primers are listed in Table S1 (available 

at https:// figsh are. com/s/ 0a18f 9457c 67146 b7fd5). GAPDH 
expression was used for normalization.

Statistical analysis

Statistical analyses were performed with SPSS (version 26, 
IBM SPSS Statistics, Chicago, IL, US) and RStudio (ver-
sion 1.1.414, RStudio Inc., Boston, MA, US) unless stated 
otherwise. Basic characteristics and clinical variables are 
presented as median (interquartile range). Systolic and dias-
tolic blood pressure before and after the intervention were 
analyzed using the Wilcoxon’s test. Unpaired Mann–Whit-
ney tests were used on qPCR data to compare before- and 
after-intervention samples.

Results

Participant characteristics

This project is an exploratory analysis of a randomized study 
recently published (Marcotte-Chénard et al. 2021). Charac-
teristics of the 6 randomly recruited participants for tran-
scriptomic analyses are presented in Table 1. All participant 

Table 1  Participants baseline 
characteristics and variation 
post training

Data are presented as median [interquartile range], N (%) for the medication and variation (and p value) 
between pre and post intervention
T2D type 2 diabetes, BMI body mass index, HDL high-density lipoprotein, LDL low-density lipoprotein, 
BP blood pressure

Subsample (N = 6) Variation p

Age 66.2 [63.0–70.3] – –
T2D duration (years) 7.5 [2.4–17.5] – –
Weight (kg) 75.7 [71.5–113.8] − 0.40 (4.90) 0.387
BMI (kg/m2) 31.2 [28.2–44.5] 0.12 (1.80) 0.192
Lean body mass (kg) 42.3 [40.3–48.5] – –
Fat mass (kg) 29.1 [26.9–45.4] – –
A1C (%) 6.3 [5.9–7.7] − 0.10 (0.60) 0.624
Fasting glucose (mmol/L) 6.7 [5.7–7.7] 0.00 (1.80) 0.352
Fasting insulin (mIU/L) 71.5 [29.8–217.5] 23.0 (32.0) 0.018
Total cholesterol (mmol/L) 4.12 [3.9–4.22] 0.02 ± 0.31 0.970
HDL-cholesterol (mmol/L) 1.04 [0.99–1.60] 0.02 ± 0.12 0.931
LDL-cholesterol (mmol/L) 2.39 [1.90–2.51] − 0.03 ± 0.27 0.984
TG (mmol/L) 1.18 [0.68–1.61] 0.02 ± 0.12 0.599
Systolic BP (mmHg) 122[114–139] − 12.4 ± 9.8 0.324
Diastolic BP (mmHg) 77 [74–79] − 7.7 ± 6.8 0.490
Medication
 Nb of medication 6.5 [4.0–9.8] – –
 Glucose lowering medication n (%) 6 (100) – –
 Hypotensive medication n (%) 6 (100) – –
 Lipid-lowering medication n (%) 5 (83) – –

https://figshare.com/s/0a18f9457c67146b7fd5
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characteristics were normally distributed, except for plasma 
total cholesterol concentration.

Change in resting systolic and diastolic blood 
pressure following the HIIT intervention

Although the sample size is small (n = 6), there was a statis-
tically significant reduction in resting diastolic blood pres-
sure of the participants initially chosen to be included in 
the transcriptomic analysis (76.5 [74.00–79.25] mmHg to 
73.00 [69.00–76.25] mmHg; p = 0.024). A reduction of sys-
tolic blood pressure was observed in the full sample (n = 14; 
p = 0.011 data not shown), although a mild change was 
observed in this subsample (121.5 [113.75–138.5] mmHg 
to 120.5 [115.5–128.25] mmHg; p = 0.686).

RNA‑Seq analysis revealed 56 negatively regulated, 
CVD‑associated genes with the intervention

Six samples were analyzed by RNA-seq. Samples of four 
participants were paired with pre- and post-intervention. 
Unfortunately, because of the limited amount of isolated 

RNA, pre-intervention from one participant and post-inter-
vention from another participant were not examined.

The RNA-seq analysis revealed that the expression of 
56 genes was negatively regulated by the HIIT intervention 
and surprisingly none were upregulated (Fig. 1). Change in 
expression, gene function and the potential link with CVD 
are presented in Table S2 (available at https:// figsh are. com/s/ 
0a18f 9457c 67146 b7fd5). A considerable number of these 
genes are well characterized in the non-monocytic cell 
types, often of hematopoietic origins (i.e., T cells, NK, den-
dritic cells or eosinophils). Noteworthy, 4 identified genes 
(CHRM3 antisense RNA 2, CHRM3-AS2; Long Intergenic 
Non-Protein Coding RNA 861, LINC00861; PRKCQ anti-
sense RNA 1, PRKCQ-AS1; Myocardial infarction associ-
ated transcript, MIAT) produce non-coding long RNAs, three 
of which have unknown function.

Differentially expressed genes were regrouped accord-
ing to similarities in their expression patterns and function 
(Fig. 2). Several genes are associated with T cell activa-
tion and differentiation pathways and a large cluster of 
them are related to TCR signaling (CD247/CD3ζ, CD3G, 
CD3D, TRAC, LCK, ITK, ZAP70, GRAP2, NFAT2, CD28, 

Fig. 1  Heatmap of differential gene expression before and after HIIT 
intervention. Numbers in legend correspond to the binary log counts 
per million (logCPM), representing the ratio of gene-specific aligned 

transcripts over the total number of sequenced transcripts in a sam-
ple, multiplied by a million. Raw data for logCPM are presented in 
Table S1

https://figshare.com/s/0a18f9457c67146b7fd5
https://figshare.com/s/0a18f9457c67146b7fd5
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SIT1, CARD11/CARMA1). To help the comparison of our 
data with existing literature, KEGG database annotations 
are presented separately in Table 2. Similarl to the annota-
tions presented in Fig. 2, most of the regulated genes have 
functions that are associated with immune cell activation 
as well as pathologies and conditions with a major immune 
component such as measles, malaria and infection to human 
T-lymphotropic virus.

qPCR gene expression analysis on 10 chosen 
samples confirmed the RNA‑Seq data

To validate RNA-Seq data, quantitative PCR was performed 
using samples pre- and post-intervention of five participants 
(n = 10) of the six participants’ subgroup. Mean fold changes 
of eight selected genes were evaluated and their expression 
was decreased by HIIT intervention (Fig. 3). Three of them 

were significantly reduced (HBB, − 90.8%, p = 0.019; HBA2, 
− 92.2%, p = 0.007; CD247, − 28.9%, p = 0.047; Fig. 3A–C) 
and two others showed a trend toward significance (ZAP, 
− 47.6%, p = 0.075; CD226, − 27,1%, p = 0.075; Fig. 3D, E). 
In addition, there was an average reduction of 51.1%, 36.5% 
and 51% for CCL5, IL-2RB and PPBP, respectively, but the 
changes were not statistically significant, due to individual 
variability and low sample size (Fig. 3F–H).

Discussion

The objective of this study was to evaluate for the first time 
the effect of a 12-week HIIT intervention on the circulat-
ing monocyte transcriptome in older women with T2D. We 
hypothesized that the intervention would lower the expres-
sion of genes associated with atherosclerosis development 

Fig. 2  Graphical representation of differentially expressed genes. The 
vertical axis lists the names of the categories of pathways/functions 
(MSigDB database), and the horizontal axis shows the proportion of 
annotated genes in each category versus the total number of anno-

tated genes. Dots diameter represents the number of individual genes 
associated with each of the listed function. p values were adjusted 
with Benjamini–Hochberg post-hoc test (FDR 5%)
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(i.e., inflammatory response, cellular adhesion, oxidative 
stress, macrophages polarization and lipid metabolism) 
in circulating monocytes of the studied population while 
reducing resting blood pressure. Transcriptome analysis was 
performed on circulating monocytes  (CD14+) of subgroup 
of 6 women who completed the study. We uncovered that 
56 genes were negatively regulated and several of them are 
associated with atherosclerosis progression. Concomitant 
with the downregulation of those genes, a reduction of rest-
ing diastolic blood pressure was observed, associating the 
molecular signature with clinical outcomes. Although sev-
eral hypotheses including the anti-inflammatory effect of 
β2 adrenergic stimulation (Galvez et al. 2019) and exercise-
induced hemodynamic changes (Van Craenenbroeck et al. 
2014) have been proposed to explain the cardiovascular ben-
efits of exercise, the mechanism by which exercise influences 
monocyte function remains unclear.

Interestingly, all the genes identified in our study were 
negatively regulated by the intervention. This phenomenon 
has been previously reported in the literature. A study on 
the acute effect of one HIIT workout session found 33 over 
35 genes to be downregulated in circulating monocytes 

(Wang et al. 2015). Other explanations for these unidi-
rectional changes may be due to the adaptative effects of 
aerobic exercise and resistance training on PBMC activity 
as well as the influence of physical activity levels, dietary 
and sleep habits (Sakharov et al. 2012). Interestingly, other 
groups have shown that reduction of gene expression such 
as CDKN2A/2B/2BAS in leucocytes is associated with pro-
inflammatory monocytes in T1D and T2D (Vinu et al. 
2019; Martinez-Hervas et al. 2019). In addition, because 
the quantity of isolated circulating monocyte was variable 
among participants, some extracted RNA samples were not 
analyzed by RNA-seq. Therefore, differentially expressed 
genes may have not been identified due to the sample size 
and heterogenous response caused by physical exercise. 
However, despite the complexity of the innate immune 
system, our results appear to suggest that the HIIT inter-
vention could shift a large proportion of the circulating 
monocyte population toward a less activated phenotype. 
We cannot exclude the possibility that diabetes and exer-
cise intervention may upregulate genes that were not cap-
tured in our study.

Genes associated with monocyte migration 
and pro‑inflammatory activation

The expression of genes associated with CD14+ cells 
adhesion and endothelial transmigration was negatively 
regulated by the HIIT intervention. Our data demonstrated 
that the chemokine (C–C motif) ligand 5 (CCL5/RANTES) 
gene, a leucocyte recruiting chemokine that acts similarly 
as CCL2/MCP-1 by recruiting immune cells from the 
peripheral blood to sites of inflammation, seems down-
regulated with the exercise training. It has been shown 
that CCL5 can promote the formation of atheroma in 
mice (Blin et al. 2019). Interestingly, the expression of 
CCL5 in the adipose tissue of adults living with obesity 
can be decreased following a mixed program of aerobic 
and resistance training for a 3-month period (Baturcam 
et al. 2014). To our knowledge, the present study is the 
first to suggest a reduction of the expression of CCL5 in 
human blood monocytes following a physical exercise 
intervention.

Our exploratory results suggest that genes differentially 
regulated by HIIT are involved in monocyte proliferation, 
differentiation, and activation. Lymphoid enhancer-binding 
factor 1 (LEF1), a transcription factor classically activated 
by the Wnt-/β-catenin pathway, could influence the dif-
ferentiation of monocytes. Borrell-Pagès and colleagues 
have shown that monocytes/macrophage activation of the 
LEF1 transcription factor is involved in LDL uptake and 
cell migration, two critical processes of atherosclerosis pro-
gression (Borrell-Pages et al. 2014).

Table 2  KEGG of differentially expressed genes

Analyses performed with DAVID Bioinformatics Resources (Huang 
et al. 2007)
KEGG Kyoto Encyclopedia of Genes and Genomes
† Fischer’s modified exact test (EASE score) was used to compare the 
proportion of annotated genes in each pathway/function versus the 
total number of annotated genes. ‡p values were adjusted with Benja-
mini–Hochberg post-hoc test (FDR 5%)

KEGG annotation Number 
of genes

p† Ajusted p‡

T cell receptor signaling pathway 12 1.6 ×  10–12 1.6 ×  10–10

Primary immunodeficiency 5 2.6 ×  10–5 1.3 ×  10–3

Natural killer cell mediated cyto-
toxicity

7 3.5 ×  10–5 1.2 ×  10–3

Hematopoietic cell lineage 5 1.0 ×  10–3 2.6 ×  10–2

NF-kappa B signaling pathway 5 1.0 ×  10–3 2.6 ×  10–2

HTLV-I infection 7 1.8 ×  10–3 3.6 ×  10–2

Chagas disease 5 2.0 ×  10–3 3.3 ×  10–2

Measles 5 4.9 ×  10–3 6.8 ×  10–2

African trypanosomiasis 3 1.3 ×  10–2 1.5 ×  10–1

Malaria 3 2.7 ×  10–2 2.6 ×  10–1

Cytokine-cytokine receptor 
interaction

5 3.7 ×  10–2 3.2 ×  10–1

Cell adhesion molecules (CAMs) 4 3.7 ×  10–2 3.0 ×  10–1

Colorectal cancer 3 4.1 ×  10–2 3.0 ×  10–1

Arrhythmogenic right ventricular 
cardiomyopathy (ARVC)

3 4.8 ×  10–2 3.2 ×  10–1

Pathways in cancer 6 5.2 ×  10–2 3.2 ×  10–1

Chemokine signaling pathway 4 7.2 ×  10–2 4.0 ×  10–1

Prostate cancer 3 7.7 ×  10–2 4.0 ×  10–1
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Fig. 3  Quantitative PCR analysis of selected genes. A Hemoglobin 
subunit beta (HBB), B hemoglobin subunit alpha 2 (HBA2), C cluster 
of differentiation 247 (CD247), D zeta-chain of T cell receptor-asso-
ciated protein kinase 70  kDa (ZAP70), E cluster of differentiation 
226 (CD226), F C–C motif chemokine ligand 5 (CCL5), G interleu-

kin 2 receptor subunit beta (IL-2RB), H pro-platelet basic protein 
(PPBP) mRNA expression in monocytes of post-menopausal women 
prior and following a 12-week high-intensity interval training (HIIT). 
Results are shown as mean ± SD. p values represent unpaired Mann–
Whitney tests
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Genes with function associated with other immune 
cells

Although the monocyte isolation was confirmed by FASC, 
our RNAseq data have unexpectedly revealed that exercise 
training seems to modulate gene expression not typically 
associated with monocyte function. CD247/CD3ζ, CD3G 
and CD3D are transmembrane proteins part of the T-cell 
antigen receptor (TCR) that play in TCR signaling (Rude-
miller et al. 2014). T cell receptor alpha constant (TRAC 
) gene expression may also be downregulated by the HIIT 
intervention in our study. In T cells, TRAC  encodes for the 
alpha chain of the TCR, which is responsible for recognizing 
antigens bound to the major histocompatibility complex of 
other cells. Moreover, we have identified several genes that 
code for proteins in TCR signal transduction and regulation 
(LCK, ITK, ZAP70, GRAP2, NFAT2, CD28, SIT1, CARD11). 
Although these genes are associated with immunity, a previ-
ous study reported that ZAP70 is modulated in lymphocytes 
of endurance-trained athletes (Alack et al. 2020), suggesting 
that TCR signal transduction could be regulated by exercise. 
Whereas it has been accepted that the TCR complex expres-
sion is exclusive to T cells, the TCRαβ and molecules neces-
sary for its signaling are expressed in circulating monocytes 
and monocyte-derived macrophages (Chavez-Galan et al. 
2015). Leukocyte C-terminal Src kinase (LCK) mRNA has 
only recently been found to be expressed in the monocyte/
macrophage lineage (Al-Mossawi et al. 2019). Although 
monocyte TCR signaling pathway is still unknown, a previ-
ous study reported that TCRαβ+ positive macrophages accu-
mulate in the atherosclerotic lesions contributing to disease 
progression (Fuchs et al. 2015). Nevertheless, we cannot 
exclude the possibility that a very small number of T cells 
may have been included in our analysis, which may explain 
the presence of T cell-related genes.

Long coding RNAs

With the recent advancements in transcriptomics, the dereg-
ulation of long non-coding RNAs (lncRNAs) is associated 
with various human diseases, including cancers, neuro-
logical disorders and CVD (Sun et al. 2018). Numerous 
lncRNAs, including the myocardial infarction-associated 
transcript (MIAT), have been linked to the progression of 
atherosclerosis (Zhong et al. 2018). Of the four long non-
coding RNAs that could be regulated by the HIIT interven-
tion, only MIAT has a known function. However, genetic 
susceptibility to CVD can result in multiple common single 
nucleotide polymorphisms (SNPs), most of them in non-
coding regions of the genome (Fiatal and Adany 2017). 
Therefore, the assumption that the three other lncRNAs 
identified (CHRM3-AS2, LINC00861 and PRKCQ-AS1) 
could be potential targets to better understand the impact 

of exercise training on monocytes function in CVD needs 
further investigations.

Altogether, considering that monocyte recruitment, dif-
ferentiation and pro-inflammatory activation play an impor-
tant role in the pathogenesis of atherosclerosis (Kita et al. 
2001), the genes identified with RNAseq, such as CCL5, 
LEF1 and ZAP70 may suggest a positive impact of exercise 
on CVD risk. Nonetheless, future studies regarding the func-
tion of these individual genes in the context of atheroscle-
rosis will be required to fully appreciate the effects of HIIT 
on circulating monocyte activation.

Conclusion

In summary, a 12-week HIIT intervention reduced the 
expression of 56 genes in circulating monocytes of older 
women with T2D, many of them are associated with inflam-
mation and/or the development of CVD. The negative 
modulation of these genes globally may suggest a favorable 
cardiovascular impact of HIIT in this population. However, 
we cannot exclude the possibility that other physical exer-
cise intervention may also produce similar effects in older 
women with T2D. Nonetheless, shedding light on the mech-
anisms underlying HIIT effects on cells involved in CVD 
development is of critical importance to develop efficient 
non-pharmacologic prevention strategies to further guide 
research investigations.
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